Humic acid-induced synthesis of hierarchical basic copper carbonate/AlOOH microspheres and its enhanced catalytic activity for 4-nitrophenol reduction

نویسندگان

  • Wenjin Zhang
  • Zhengbin Tian
  • Lijian Chen
  • Shiyun Ai
چکیده

One-pot synthesis of basic copper carbonate/AlOOH microspheres with hierarchical structure in the absence and presence of humic acid is presented. The synthesized microspheres are characterized by SEM, EDS, TEM, XRD, FT-IR and TGA data. The catalytic ability of these hierarchical structures has been evaluated with reduction of 4-nitrophenol to 4-aminophenol with excess amount of NaBH4 as a model reaction. The reduction is regarded as a pseudo first-order reaction and the activation energy calculated to from the Arrhenius plots. The urchin-like HA-BBC/AlOOH shows better catalytic performance than the pure BBC/AlOOH samples with flower-like structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TiO2/SiO2 prepared via facile sol-gel method as an ideal support for green synthesis of Ag nanoparticles using Oenothera biennis extract and their excellent catalytic performance in the reduction of 4-nitrophenol

In the present study, the extract of the plant of Oenothera biennis was used to green synthesis of silver nanoparticles (Ag NPs) as an environmentally friendly, simple and low cost method. And Additionally, TiO2/SiO2 was prepared via facile sol-gel method using starch as an important, naturally abundant organic polymer as an ideal support. The Ag NPs/TiO2/SiO<su...

متن کامل

One-Pot Green Synthesis of Ag-Decorated SnO2 Microsphere: an Efficient and Reusable Catalyst for Reduction of 4-Nitrophenol

In this paper, hierarchical Ag-decorated SnO2 microspheres were synthesized by a facile one-pot hydrothermal method. The resulting composites were characterized by XRD, SEM, TEM, XPS, BET, and FTIR analysis. The catalytic performances of the samples were evaluated with the reduction of 4-nitrophenol to 4-aminophenol by potassium borohydride (KBH4) as a model reaction. Time-dependent experiments...

متن کامل

A new approach for crystallization of copper(II) oxide hollow nanostructures with superior catalytic and magnetic response.

We report the synthesis of copper(II) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used ...

متن کامل

Uniform Ni/SiO2@Au magnetic hollow microspheres: rational design and excellent catalytic performance in 4-nitrophenol reduction.

A unique and rational design was presented to fabricate Ni/SiO2@Au magnetic hollow microspheres (MHMs) with interesting structures and well-dispersed metal nanoparticles. Hierarchical nickel silicate hollow microspheres were synthesized using silica colloidal spheres as a chemical template. Then, Ni/SiO2 MHMs with well-dispersed Ni nanoparticles were prepared via an in situ reduction approach. ...

متن کامل

Facile fabrication, characterization and enhanced heterogeneous catalytic reduction of 4-nitrophenol using undoped and doped ZrO2 nanoparticles

Here, we successfully developed the undoped, Ni2+, Cu2+, and Zn2+ doped Zirconia nanoparticles (ZrO2 NPs) by a simple co-precipitation method at room temperature and characterized by various physicochemical measurement techniques to investigate their structure, morphology, and sizes of the particles. The bandgap energy values of doped and undoped ZrO2 NPs were estimated using optical absorption...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016